Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Morpholinium 2-chloro-4-nitrobenzoate, 2-chloro-5-nitrobenzoate and 4-chloro-3-nitrobenzoate

Hiroyuki Ishida,* Bilkish Rahman and Setsuo Kashino

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Received 18 September 2001
Accepted 3 October 2001

Morpholinium 2-chloro-4-nitrobenzoate, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Cl}-$ $\mathrm{NO}_{4}{ }^{-}$, (I), crystallizes in a non-centrosymmetric space group. The cations and anions are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to afford a 2_{1} helical chain. Morpholinium 2-chloro-5nitrobenzoate, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$, (II), and morpholinium 4-chloro-3-nitrobenzoate, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$, (III), both crystallize in a centrosymmetric space group. In (II) and (III), two cations and two anions are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a centrosymmetric ring with graph-set descriptor $R_{4}^{4}(12)$.

Comment

Chiral crystals composed of two achiral molecules have attracted much interest because of their potential use in absolute asymmetric synthesis (Green et al., 1979; Koshima, Ding et al., 1996; Tanaka \& Toda, 2000) and non-linear optics (Koshima, Wang et al., 1996). In the course of our study on $D-\mathrm{H} \cdots A$ hydrogen bonding ($D: \mathrm{N}, \mathrm{O}$ or $\mathrm{C} ; A: \mathrm{N}, \mathrm{O}$ or Cl) in

(I)

(III)
chloro- and nitro-substituted benzoic acid-amine systems (Ishida et al., 2001a,b,c,d), we found that imidazolium 2-chloro-4-nitrobezoate crystallizes in the non-centrosymmetric space group $P 2_{1}$. In the crystal, the cations and anions

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of (I) with the atom-labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines [symmetry code: (i) $\frac{3}{2}-x, 1-y, z-\frac{1}{2}$].
are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to afford a 2_{1} helical chain (Ishida et al., 2001d). This is the first example of a chloro- and nitro-substituted benzoic acid-amine system that shows spontaneous resolution of a chiral rotational isomer of the benzoate ion. Thus, we have prepared crystals composed of chloro- and nitro-substituted benzoic acid and amine with the expectation that such a chiral rotational isomer exists

Figure 2
Packing diagram of (I) showing the helical structure formed via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which are indicated by dashed lines. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions which connect the helical chains are indicated by dotted lines [symmetry codes: (i)-(iv) are as in Table 2; (v) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; (vi) $1+x, y, z ;\left(\right.$ vii) $\left.2-x, y-\frac{1}{2}, \frac{3}{2}-z\right]$.
widely in these systems; we have chosen morpholine as the counter-cation and prepared salts with 2-chloro-4-nitro-, (I), 2-chloro-5-nitro-, (II), and 4-chloro-3-nitrobenzoic acid, (III), and determined their crystal structures. Of these salts, (I) crystallizes in the non-centrosymmetric space group $P 2_{1} 2_{1} 2_{1}$.

The asymmetric units of (I), (II) and (III) have the formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$. In these crystals, an acid-base interaction involving a proton transfer is observed, as expected from the high basicity of the amine present. In (I), the cations and anions are held together by short $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming a 2_{1} helical chain along the c axis (Figs. 1 and 2). One of the O atoms of the carboxylate group, O1, forms two hydrogen bonds with the cations, while the other O atom, O 2 , forms no hydrogen bond. The $\mathrm{C}-\mathrm{O}$ bond involved in the hydrogen bond is rather long [C7-O1 1.267 (3) \AA] compared with the other $\mathrm{C}-\mathrm{O}$ bond length [C7-O2 1.223 (4) \AA] and the $\mathrm{C}-\mathrm{O}$ bond lengths in (II) and (III) $[1.237$ (3)-1.247 (3) Å], where both O atoms of the carboxylate groups are involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (see below). The helical chains are linked by three main C $\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) involving both O atoms of the nitro group and the O atom of the cation (Fig. 2). The
carboxylate group is considerably twisted out of the plane of the benzene ring [dihedral angle $72.1(2)^{\circ}$] compared with the calculated value (41.1°) for the isolated anion in the gas phase, using the GAUSSIAN98/HF program (Frisch et al., 1998) with the $6-31 \mathrm{G}^{* *}$ basis set. On the other hand, the nitro group makes a small angle of $1.8(2)^{\circ}$ with the benzene ring, which is comparable to the calculated angle of 0.5°.

In (II) and (III), two cations and two anions are held together by short $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Tables 4 and 6). Both O atoms of the carboxylate groups are involved in the hydrogen bonds, forming centrosymmetric hydrogen-bonded rings (Figs. 3 and 4) with graph-set descriptor $R_{4}^{4}(12)$ (Bernstein et al., 1995) in a similar manner to those observed in morpholinium 4-chloro-2-nitrobenzoate and 5-chloro-2nitrobenzoate (Ishida et al., 2001b,c). In (II), the dihedral angle between the carboxylate group and the benzene ring is $61.0(2)^{\circ}$ and that between the nitro group and the benzene ring is 11.7 (2) ${ }^{\circ}$. In (III), these dihedral angles are 13.2 (2) and $19.3(2)^{\circ}$, respectively. There are two and three important $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions in (II) and (III), respectively, which connect the macro-rings (Tables 4 and 6).

Experimental

The title compounds were prepared by mixing morpholine with the corresponding benzoic acid (molar ratio of 1:1) in acetonitrile. Single crystals were grown by slow evaporation of the solutions at room temperature.

Compound (I)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$
$M_{r}=288.69$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.304$ (2) \AA
$b=19.557$ (6) \AA
$c=6.4387$ (13) \AA
$V=1297.5(5) \AA^{3}$
$Z=4$
$D_{x}=1.478 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.885, T_{\text {max }}=0.940$
4209 measured reflections
3101 independent reflections
1769 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.053$
$w R\left(F^{2}\right)=0.075$
$S=1.04$
3101 reflections
173 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+0.4754 P\right]$
\quad where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

> Mo $K \alpha$ radiation
> Cell parameters from 25 reflections
> $\theta=11.3-12.4^{\circ}$
> $\mu=0.31 \mathrm{~mm}^{-1}$
> $T=298 \mathrm{~K}$
> Prismatic, colorless
> $0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
$R_{\mathrm{int}}=0.058$
$\theta_{\max }=29.0^{\circ}$
$h=-3 \rightarrow 14$
$k=-3 \rightarrow 26$
$l=-3 \rightarrow 8$
3 standard reflections
\quad every 97 reflections
intensity decay: 1.7%
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Extinction correction: SHELXL97
Extinction coefficient: 0.0053 (9)
Absolute structure: (Flack, 1983),
1102 Friedel pairs
Flack parameter $=0.02(8)$

Figure 4
ORTEP-3 drawing of (III) showing a hydrogen-bonded ring. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines [symmetry code: (i) $\left.\frac{3}{2}-x, \frac{3}{2}-y, 1-z\right]$.

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Cl}-\mathrm{C} 2$	$1.748(3)$	$\mathrm{O} 3-\mathrm{N} 1$	$1.230(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.267(3)$	$\mathrm{O} 4-\mathrm{N} 1$	$1.232(3)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.223(4)$		
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$-3.9(4)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$-74.1(4)$
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$176.2(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$108.9(3)$

Table 2
Hydrogen-bonding geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H4 . ${ }^{\text {O }}$ 1	0.89	1.80	2.682 (3)	170
$\mathrm{N} 2-\mathrm{H} 5 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.89	1.86	2.747 (3)	174
$\mathrm{C} 6-\mathrm{H} 3 \cdots \mathrm{O} 3^{\text {ii }}$	0.93	2.49	3.378 (4)	160
$\mathrm{C} 10-\mathrm{H} 11 \cdots \mathrm{O} 5^{\text {iii }}$	0.97	2.55	3.486 (4)	161
$\mathrm{C} 11-\mathrm{H} 12 \cdots 4^{\text {iv }}$	0.97	2.53	3.340 (4)	141

Symmetry codes: (i) $\frac{3}{2}-x, 1-y, z-\frac{1}{2}$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (iii) $\frac{5}{2}-x, 1-y, \frac{1}{2}+z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$.

Compound (II)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} . \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$
$M_{r}=288.69$
Monoclinic, $C 2 /$ c
$a=18.680$ (6) A
$b=10.498$ (3) A
$c=13.125$ (3) \AA
$\beta=93.35$ (2) ${ }^{\circ}$
$V=2569.5(13) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& D_{x}=1.492 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=11.2-12.5^{\circ} \\
& \mu=0.32 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Prismatic, colorless } \\
& 0.40 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku AFC-5 R diffractometer	$R_{\text {int }}=0.025$
$\omega-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: ψ scan	$h=-1 \rightarrow 24$
\quad (North et al., 1968$)$	$k=0 \rightarrow 13$
$T_{\min }=0.884, T_{\max }=0.940$	$l=-17 \rightarrow 17$
3215 measured reflections	3 standard reflections
2945 independent reflections	every 97 reflections
1741 reflections with $I>2 \sigma(I)$	intensity decay: 1.5%

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0219 P)^{2}\right.$
$+1.0240 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0240 (11)

Table 3
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$\mathrm{Cl}-\mathrm{C} 2$	$1.743(3)$	$\mathrm{O} 3-\mathrm{N} 1$	$1.216(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.247(3)$	$\mathrm{O} 4-\mathrm{N} 1$	$1.218(3)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.244(3)$		
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$167.6(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$-63.1(3)$
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$-13.0(4)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$119.8(3)$

Table 4
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 4 \cdots \mathrm{O} 2$	$0.83(3)$	$1.89(3)$	$2.719(3)$	$178(2)$
$\mathrm{N} 2-\mathrm{H} 5 \cdots 1^{\mathrm{i}}$	$1.00(4)$	$1.7(3)$	$2.753(3)$	$169(3)$
$\mathrm{C} 4-\mathrm{H} 2 \cdots \mathrm{O}^{\text {ii }}$	$0.89(3)$	$2.58(3)$	$3.371(4)$	$148(2)$
$\mathrm{C}^{\mathrm{C}} 1-\mathrm{H} 13 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.98(3)$	$2.55(3)$	$3.344(4)$	$138(2)$

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$.

Compound (III)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} . \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}^{-} \quad D_{x}=1.493 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=288.69$
Monoclinic, $C 2 / c$
Mo $K \alpha$ radiation
$a=19.76$ (2) \AA
$b=10.085$ (7) \AA
Cell parameters from 25
reflections
$c=13.639(5) \AA$
$\theta=11.1-12.4^{\circ}$
$\beta=109.09(4)^{\circ}$
$V=2569(3) \AA^{3}$
$Z=8$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prismatic, colorless
$0.40 \times 0.30 \times 0.25 \mathrm{~mm}$

Data collection

Rigaku AFC- $5 R$ diffractometer	$R_{\text {int }}=0.025$
$\omega-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: ψ scan	$h=-1 \rightarrow 25$
\quad (North et al., 1968)	$k=0 \rightarrow 13$
$T_{\min }=0.884, T_{\max }=0.925$	$l=-17 \rightarrow 16$
3198 measured reflections	3 standard reflections
2945 independent reflections	every 97 reflections
1850 reflections with $I>2 \sigma(I)$	intensity decay: none

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+2.0068 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$R(F)=0.047$
$w R\left(F^{2}\right)=0.116$
$(\Delta / \sigma)_{\text {max }}=0.001$
$S=1.03$
2945 reflections
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
225 parameters
Extinction correction: SHELXL97
Extinction coefficient: 0.0053 (4)

Table 5
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$) for (III).

$\mathrm{Cl}-\mathrm{C} 4$	$1.727(3)$	$\mathrm{O} 3-\mathrm{N} 1$	$1.220(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.242(3)$	$\mathrm{O} 4-\mathrm{N} 1$	$1.204(3)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.237(3)$		
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$-20.3(4)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$-12.9(4)$
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$160.9(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$166.3(2)$

Table 6
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots \cdot$
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{O} 2$	0.93 (3)	1.85 (3)	2.752 (4)	160 (3)
$\mathrm{N} 2-\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {i }}$	0.99 (4)	1.66 (4)	2.629 (4)	164 (3)
$\mathrm{C} 5-\mathrm{H} 2 \cdots \mathrm{O} 5^{\text {ii }}$	1.00 (3)	2.58 (3)	3.269 (5)	125.9 (19)
C8-H6 . ${ }^{\text {O }} 4^{\text {iii }}$	1.00 (4)	2.49 (4)	3.335 (6)	142 (3)
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2$	1.05 (4)	2.48 (4)	3.255 (6)	131 (2)

Symmetry codes: (i) $\frac{3}{2}-x, \frac{3}{2}-y, 1-z$; (ii) $x, y-1, z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$.

For (I), the H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic $\mathrm{H}, \mathrm{C}-\mathrm{H}=0.97 \AA$ for secondary H and $\mathrm{N}-\mathrm{H}=0.89 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{N})$. For (II) and (III), the H atoms were refined isotropically. Refined distances: $\mathrm{C}-\mathrm{H}=0.86$ (3)0.99 (3) \AA and $\mathrm{N}-\mathrm{H}=0.83$ (3)-0.99 (4) \AA for (II); $\mathrm{C}-\mathrm{H}=0.89$ (4)1.05 (4) \AA and $\mathrm{N}-\mathrm{H}=0.93$ (3)-1.00 (3) \AA for (III).

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I), and SIR92 (Altomare et al., 1993) for (II) and (III). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows.

X-ray measurements were carried out at the X-ray Laboratory of Okayama University.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1046). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Frisch, M. J. et al. (1998). GAUSSIAN98. Revision A.7. Gaussian Inc., Pittsburgh, PA, USA.
Green, B. S., Lahav, M. \& Rabinovich, D. (1979). Acc. Chem. Res. 12, 191-197.
Ishida, H., Rahaman, B. \& Kashino, S. (2001a). Acta Cryst. C57, 876-879.
Ishida, H., Rahaman, B. \& Kashino, S. (2001b). Acta Cryst. E57, o627-o629.
Ishida, H., Rahaman, B. \& Kashino, S. (2001c). Acta Cryst. E57, o630-o632.
Ishida, H., Rahaman, B. \& Kashino, S. (2001d). Acta Cryst. E57, o744-o745.
Koshima, H., Ding, K., Chisaka, Y. \& Matsuura, T. (1996). J. Am. Chem. Soc. 118, 12059-12065.
Koshima, H., Wang, Y., Matsuura, T., Mibaka, N. \& Imahashi, S. (1996). Mol. Cryst. Liq. Cryst. 275, 233-239.
Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997-1999). TEXSAN for Windows. Version 1.06. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tanaka, K. \& Toda, F. (2000). Chem. Rev. 100, 1025-1074.

