organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Morpholinium 2-chloro-4-nitrobenzoate, 2-chloro-5-nitrobenzoate and 4-chloro-3-nitrobenzoate

Hiroyuki Ishida,* Bilkish Rahman and Setsuo Kashino

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Received 18 September 2001 Accepted 3 October 2001

Morpholinium 2-chloro-4-nitrobenzoate, $C_4H_{10}NO^+ \cdot C_7H_3Cl-NO_4^-$, (I), crystallizes in a non-centrosymmetric space group. The cations and anions are connected by $N-H \cdot \cdot \cdot O$ hydrogen bonds to afford a 2_1 helical chain. Morpholinium 2-chloro-5nitrobenzoate, $C_4H_{10}NO^+ \cdot C_7H_3CINO_4^-$, (II), and morpholinium 4-chloro-3-nitrobenzoate, $C_4H_{10}NO^+ \cdot C_7H_3CINO_4^-$, (III), both crystallize in a centrosymmetric space group. In (II) and (III), two cations and two anions are held together by $N-H \cdot \cdot \cdot O$ hydrogen bonds to form a centrosymmetric ring with graph-set descriptor $R_4^4(12)$.

Comment

Chiral crystals composed of two achiral molecules have attracted much interest because of their potential use in absolute asymmetric synthesis (Green *et al.*, 1979; Koshima, Ding *et al.*, 1996; Tanaka & Toda, 2000) and non-linear optics (Koshima, Wang *et al.*, 1996). In the course of our study on $D-H\cdots A$ hydrogen bonding (D: N, O or C; A: N, O or Cl) in

chloro- and nitro-substituted benzoic acid-amine systems (Ishida *et al.*, 2001a,b,c,d), we found that imidazolium 2-chloro-4-nitrobezoate crystallizes in the non-centrosymmetric space group $P2_1$. In the crystal, the cations and anions

Figure 1

ORTEP-3 (Farrugia, 1997) drawing of (I) with the atom-labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. $N-H\cdots O$ hydrogen bonds are indicated by dashed lines [symmetry code: (i) $\frac{3}{2} - x$, 1 - y, $z - \frac{1}{2}$].

are connected by $N-H\cdots O$ hydrogen bonds to afford a 2_1 helical chain (Ishida *et al.*, 2001*d*). This is the first example of a chloro- and nitro-substituted benzoic acid-amine system that shows spontaneous resolution of a chiral rotational isomer of the benzoate ion. Thus, we have prepared crystals composed of chloro- and nitro-substituted benzoic acid and amine with the expectation that such a chiral rotational isomer exists

Figure 2

Packing diagram of (I) showing the helical structure formed *via* N– H···O hydrogen bonds, which are indicated by dashed lines. C–H···O interactions which connect the helical chains are indicated by dotted lines [symmetry codes: (i)–(iv) are as in Table 2; (v) 1 - x, $y - \frac{1}{2}$, $\frac{3}{2} - z$; (vi) 1 + x, *y*, *z*; (vii) 2 - x, $y - \frac{1}{2}$, $\frac{3}{2} - z$].

widely in these systems; we have chosen morpholine as the counter-cation and prepared salts with 2-chloro-4-nitro-, (I), 2-chloro-5-nitro-, (II), and 4-chloro-3-nitrobenzoic acid, (III), and determined their crystal structures. Of these salts, (I) crystallizes in the non-centrosymmetric space group $P2_12_12_1$.

The asymmetric units of (I), (II) and (III) have the formula $C_4H_{10}NO^+ \cdot C_7H_3CINO_4^-$. In these crystals, an acid-base interaction involving a proton transfer is observed, as expected from the high basicity of the amine present. In (I), the cations and anions are held together by short $N-H \cdots O$ hydrogen bonds (Table 2), forming a 2_1 helical chain along the c axis (Figs. 1 and 2). One of the O atoms of the carboxylate group, O1, forms two hydrogen bonds with the cations, while the other O atom, O2, forms no hydrogen bond. The C-Obond involved in the hydrogen bond is rather long [C7–O1 1.267 (3) Å] compared with the other C–O bond length $[C7-O2\ 1.223\ (4)\ Å]$ and the C-O bond lengths in (II) and (III) [1.237 (3)-1.247 (3) Å], where both O atoms of the carboxylate groups are involved in N-H···O hydrogen bonds (see below). The helical chains are linked by three main C- $H \cdots O$ interactions (Table 2) involving both O atoms of the nitro group and the O atom of the cation (Fig. 2). The

Figure 3

ORTEP-3 drawing of (II) showing a hydrogen-bonded ring. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. $N-H\cdots O$ hydrogen bonds are indicated by dashed lines [symmetry code: (i) 1 - x, -y, 1 - z].

Figure 4

ORTEP-3 drawing of (III) showing a hydrogen-bonded ring. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. N-H···O hydrogen bonds are indicated by dashed lines [symmetry code: (i) $\frac{3}{2} - x$, $\frac{3}{2} - y$, 1 - z]. carboxylate group is considerably twisted out of the plane of the benzene ring [dihedral angle 72.1 (2)°] compared with the calculated value (41.1°) for the isolated anion in the gas phase, using the *GAUSSIAN98/HF* program (Frisch *et al.*, 1998) with the 6-31G** basis set. On the other hand, the nitro group makes a small angle of 1.8 (2)° with the benzene ring, which is comparable to the calculated angle of 0.5°.

In (II) and (III), two cations and two anions are held together by short $N-H\cdots O$ hydrogen bonds (Tables 4 and 6). Both O atoms of the carboxylate groups are involved in the hydrogen bonds, forming centrosymmetric hydrogen-bonded rings (Figs. 3 and 4) with graph-set descriptor $R_4^4(12)$ (Bernstein *et al.*, 1995) in a similar manner to those observed in morpholinium 4-chloro-2-nitrobenzoate and 5-chloro-2-nitrobenzoate (Ishida *et al.*, 2001*b,c*). In (II), the dihedral angle between the carboxylate group and the benzene ring is $61.0 (2)^\circ$ and that between the nitro group and the benzene ring is $11.7 (2)^\circ$. In (III), these dihedral angles are 13.2 (2) and $19.3 (2)^\circ$, respectively. There are two and three important C-H···O interactions in (II) and (III), respectively, which connect the macro-rings (Tables 4 and 6).

Experimental

The title compounds were prepared by mixing morpholine with the corresponding benzoic acid (molar ratio of 1:1) in acetonitrile. Single crystals were grown by slow evaporation of the solutions at room temperature.

Compound (I)

Crystal data

 $\begin{array}{ccc} C_4 H_{10} \text{NO}^+ \cdot C_7 H_3 \text{CINO}_4^- & \text{M} \\ M_r = 288.69 & \text{C} \\ \text{Orthorhombic}, P2_1 2_1 2_1 \\ a = 10.304 \ (2) \ \text{\AA} & \theta \\ b = 19.557 \ (6) \ \text{\AA} & \mu \\ c = 6.4387 \ (13) \ \text{\AA} & T \\ V = 1297.5 \ (5) \ \text{\AA}^3 & \text{P} \\ Z = 4 & 0 \\ D_x = 1.478 \ \text{Mg m}^{-3} \end{array}$

Data collection

Rigaku AFC-5*R* diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.885$, $T_{max} = 0.940$ 4209 measured reflections 3101 independent reflections 1769 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.053 $wR(F^2) = 0.075$ S = 1.043101 reflections 173 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + 0.4754P]$ where $P = (F_o^2 + 2F_c^2)/3$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 11.3-12.4^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 298 KPrismatic, colorless $0.40 \times 0.30 \times 0.20 \text{ mm}$

$$\begin{split} R_{\rm int} &= 0.058\\ \theta_{\rm max} &= 29.0^{\circ}\\ h &= -3 \rightarrow 14\\ k &= -3 \rightarrow 26\\ l &= -3 \rightarrow 8\\ 3 \mbox{ standard reflections}\\ \mbox{ every 97 reflections}\\ \mbox{ intensity decay: 1.7\%} \end{split}$$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max}=0.001\\ \Delta\rho_{\rm max}=0.28\ e\ {\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.23\ e\ {\rm \AA}^{-3}\\ {\rm Extinction\ correction:\ SHELXL97}\\ {\rm Extinction\ coefficient:\ 0.0053\ (9)}\\ {\rm Absolute\ structure:\ (Flack,\ 1983),}\\ 1102\ {\rm Friedel\ pairs}\\ {\rm Flack\ parameter\ =\ 0.02\ (8)} \end{array}$

Table 1

Selected geometric parameters (Å, °) for (I).

1 220 (2)
1.230 (3)
1.232 (3)
711(1)
-/4.1 (4)
108.9 (3)

Table 2

Hydrogen-bonding geometry (Å, $^{\circ}$) for (I).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N2-H4···O1	0.89	1.80	2.682 (3)	170
$N2-H5\cdots O1^{i}$	0.89	1.86	2.747 (3)	174
C6-H3···O3 ⁱⁱ	0.93	2.49	3.378 (4)	160
C10-H11···O5 ⁱⁱⁱ	0.97	2.55	3.486 (4)	161
$C11{-}H12{\cdots}O4^{iv}$	0.97	2.53	3.340 (4)	141

Symmetry codes: (i) $\frac{3}{2} - x$, 1 - y, $z - \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $\frac{1}{2} - y$, 1 - z; (iii) $\frac{5}{2} - x$, 1 - y, $\frac{1}{2} + z$; (iv) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z.$

Compound (II)

Crystal data

 $C_4H_{10}NO^+ \cdot C_7H_3CINO_4^ M_r = 288.69$ Monoclinic,C2/c a = 18.680 (6) Åb = 10.498 (3) Å c = 13.125 (3) Å $\beta = 93.35(2)^{\circ}$ $V = 2569.5 (13) \text{ Å}^3$ Z = 8

Data collection

Rigaku AFC-5 <i>R</i> diffractometer			
ω –2 θ scans			
Absorption correction: ψ scan			
(North et al., 1968)			
$T_{\min} = 0.884, \ T_{\max} = 0.940$			
3215 measured reflections			
2945 independent reflections			
1741 reflections with $I > 2\sigma(I)$			

Refinement

Refinement on F^2 R(F) = 0.046 $wR(F^2) = 0.121$ S=1.002945 reflections 225 parameters All H-atom parameters refined $D_x = 1.492 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 11.2 - 12.5^{\circ}$ $\mu=0.32~\mathrm{mm}^{-1}$ T = 298 KPrismatic, colorless $0.40\,\times\,0.30\,\times\,0.20~\text{mm}$

 $R_{\rm int} = 0.025$ $\theta_{\max} = 27.5^{\circ}$ $h = -1 \rightarrow 24$ $k = 0 \rightarrow 13$ $l = -17 \rightarrow 17$ 3 standard reflections every 97 reflections intensity decay: 1.5%

 $w = 1/[\sigma^2(F_o^2) + (0.0219P)^2$ + 1.0240P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max}=0.001$ $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0240 (11)

Table 3 Selected geometric parameters (Å, °) for (II).

Cl-C2	1.743 (3)	O3-N1	1.216 (3)
01-C7	1.247 (3)	O4-N1	1.218 (3)
$02 - C^{7}$	1.244 (3)	C^{2} C^{1} C^{7} O^{2}	62 1 (2)
03 = N1 = C3 = C0	107.0 (2)	$c_2 - c_1 - c_7 - o_2$	-05.1(5)
O4-N1-C5-C6	-13.0 (4)	C2 - C1 - C7 - O1	119.8 (3)

Table 4

Hydrogen-bonding geometry (Å, °) for (II).

	$H \cdot \cdot \cdot A$	$D \cdots A$	$D = H \cdots A$
$D=\Pi\cdots A$ $D=\Pi$			
$\begin{array}{ccccc} & & & & & & \\ N2-H4\cdots O2 & & & & & & \\ N2-H5\cdots O1^{i} & & & & & & \\ 1.00 & (4\\C4-H2\cdots O1^{ii} & & & & & & \\ C11-H13\cdots O3^{iii} & & & & & & \\ 0.98 & (3\\C11-H13\cdots O3^{iii} & & & & & \\ \end{array}$) 1.89 (3)) 1.77 (3)) 2.58 (3)) 2.55 (3)	2.719 (3) 2.753 (3) 3.371 (4) 3.344 (4)	178 (2) 169 (3) 148 (2) 138 (2)

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (iii) $\frac{3}{2} - x$, $\frac{1}{2} - y$, 1 - z.

Compound (III)

Crystal data

$C_4H_{10}NO^+ \cdot C_7H_3CINO_4^-$	$D_x = 1.493 \text{ Mg m}^{-3}$
$M_r = 288.69$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 25
a = 19.76 (2) Å	reflections
b = 10.085 (7) Å	$\theta = 11.1 - 12.4^{\circ}$
c = 13.639(5) Å	$\mu = 0.32 \text{ mm}^{-1}$
$\beta = 109.09 \ (4)^{\circ}$	$T = 296 { m K}$
$V = 2569 (3) \text{ Å}^3$	Prismatic, colorless
Z = 8	0.40 \times 0.30 \times 0.25 mm
Data collection	

 $R_{\rm int} = 0.025$

 $\theta_{\rm max} = 27.5^{\circ}$

 $k = 0 \rightarrow 13$

 $h = -1 \rightarrow 25$

 $l=-17 \rightarrow 16$

3 standard reflections

every 97 reflections

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + 2.0068P]$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.0053 (4)

Rigaku AFC-5R diffractometer ω –2 θ scans Absorption correction: ψ scan (North et al., 1968) $T_{\rm min}=0.884,\ T_{\rm max}=0.925$ 3198 measured reflections 2945 independent reflections 1850 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.047 $wR(F^2) = 0.116$ S = 1.032945 reflections 225 parameters All H-atom parameters refined

Table 5

Selected geometric parameters (Å, °) for (III).

Cl-C4 O1-C7 O2-C7	1.727 (3) 1.242 (3) 1.237 (3)	O3-N1 O4-N1	1.220 (3) 1.204 (3)
O4-N1-C3-C4	-20.3 (4)	C2-C1-C7-O2	-12.9 (4)
O3-N1-C3-C4	160.9 (3)	C2-C1-C7-O1	166.3 (2)

Table 6

Hydrogen-bonding geometry (Å, °) for (III).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
N2-H4···O2	0.93 (3)	1.85 (3)	2.752 (4)	160 (3)
$N2-H5\cdots O1^{i}$	0.99 (4)	1.66 (4)	2.629 (4)	164 (3)
C5−H2···O5 ⁱⁱ	1.00(3)	2.58 (3)	3.269 (5)	125.9 (19)
C8-H6···O4 ⁱⁱⁱ	1.00(4)	2.49 (4)	3.335 (6)	142 (3)
C10−H10···O2	1.05 (4)	2.48 (4)	3.255 (6)	131 (2)

Symmetry codes: (i) $\frac{3}{2} - x$, $\frac{3}{2} - y$, 1 - z; (ii) x, y - 1, z; (iii) $x - \frac{1}{2}$, $\frac{3}{2} - y$, $z - \frac{1}{2}$.

For (I), the H atoms were treated as riding, with C–H = 0.93 Å for aromatic H, C–H = 0.97 Å for secondary H and N–H = 0.89 Å, and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm N})$. For (II) and (III), the H atoms were refined isotropically. Refined distances: C–H = 0.86 (3)– 0.99 (3) Å and N–H = 0.83 (3)–0.99 (4) Å for (II); C–H = 0.89 (4)– 1.05 (4) Å and N–H = 0.93 (3)–1.00 (3) Å for (III).

For all compounds, data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1990); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN for Windows* (Molecular Structure Corporation, 1997–1999). Program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990) for (I), and *SIR*92 (Altomare *et al.*, 1993) for (II) and (III). For all compounds, program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *TEXSAN for Windows*.

X-ray measurements were carried out at the X-ray Laboratory of Okayama University.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Frisch, M. J. et al. (1998). GAUSSIAN98. Revision A.7. Gaussian Inc., Pittsburgh, PA, USA.
- Green, B. S., Lahav, M. & Rabinovich, D. (1979). Acc. Chem. Res. 12, 191-197.
- Ishida, H., Rahaman, B. & Kashino, S. (2001a). Acta Cryst. C57, 876-879.
- Ishida, H., Rahaman, B. & Kashino, S. (2001b). Acta Cryst. E57, o627-o629.
- Ishida, H., Rahaman, B. & Kashino, S. (2001c). Acta Cryst. E57, 0630-0632.
- Ishida, H., Rahaman, B. & Kashino, S. (2001d). Acta Cryst. E57, 0744-0745.
- Koshima, H., Ding, K., Chisaka, Y. & Matsuura, T. (1996). J. Am. Chem. Soc. 118, 12059–12065.
- Koshima, H., Wang, Y., Matsuura, T., Mibaka, N. & Imahashi, S. (1996). Mol. Cryst. Liq. Cryst. 275, 233–239.
- Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1997–1999). *TEXSAN for Windows*. Version 1.06. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1046). Services for accessing these data are described at the back of the journal.